Power Prediction of Airborne Wind Energy Systems Using Multivariate Machine Learning

Published in MDPI, Energies, 2020

Recommended citation: Rushdi, M. A., Rushdi, A. A., Dief, T. N., Halawa, A. M., Yoshida, S., & Schmehl, R. (2020). Power prediction of airborne wind energy systems using multivariate machine learning. Energies, 13(9), 2367. /files/papers/AWE_ML.pdf

In this work, we present the kite system of Kyushu University and demonstrate how experimental data can be used to train machine learning regression models.

Download paper here

Recommended citation: Rushdi, M. A., Rushdi, A. A., Dief, T. N., Halawa, A. M., Yoshida, S., & Schmehl, R. (2020). Power prediction of airborne wind energy systems using multivariate machine learning. Energies, 13(9), 2367.

Direct Link