
lable at ScienceDirect

Renewable Energy 177 (2021) 1001e1013
Contents lists avai
Renewable Energy

journal homepage: www.elsevier .com/locate/renene
Machine learning approaches for thermal updraft prediction in wind
solar tower systems

Mostafa A. Rushdi a, b, *, Shigeo Yoshida a, Koichi Watanabe c, Yuji Ohya a

a Research Institute for Applied Mechanics (RIAM), Kyushu University, Fukuoka, 816-8580, Japan
b Faculty of Engineering and Technology, Future University in Egypt (FUE), New Cairo, 11835, Egypt
c Platform of Inter/Transdisciplinary Energy Research (Q-PIT), Kyushu University, Kasuga, 816-8580, Japan
a r t i c l e i n f o

Article history:
Received 9 March 2021
Received in revised form
24 May 2021
Accepted 5 June 2021
Available online 9 June 2021

Keywords:
Wind solar tower
Renewable energy
Machine learning
Linear regression model
* Corresponding author. Research Institute for
Kyushu University, Fukuoka, 816-8580, Japan.,

E-mail addresses: rushdimostafa@riam.kyushu-u.a
eg (M.A. Rushdi), yoshidas@riam.kyushu-u.ac.jp (S.
riam.kyushu-u.ac.jp (K. Watanabe), ohya@riam.kyush

https://doi.org/10.1016/j.renene.2021.06.033
0960-1481/© 2021 The Authors. Published by Elsevier
a b s t r a c t

Wind solar towers constitute a fairly new scheme for harvesting renewable energy from solar and wind
energy sources. In such a tower, solar radiation is collected and hot air is enforced to go fast through the
tower, a process called thermal updraft, which fuels a wind turbine to generate power. Using vortex
generators at the top of the tower creates a pressure difference, which increases the thermal updraft. In
this work, we describe the setup of a wind solar tower system established at Kyushu University in Japan.
Then, we demonstrate how data was collected from this system in order to train regression models for
thermal updraft prediction. The feature selection process was guided by sensitivity analysis. After that,
several machine learning models were investigated and the most suitable model was selected based on
quality and time metrics. The linear regression model was particularly examined in detail, and was
shown to have a satisfactory high accuracy of thermal updraft prediction graphically and numerically
with a coefficient of determination of R2 ¼ 0.981. We also evaluated a reduced prediction model based on
the six most essential features, which could be a reduced model description for the WST. This reduced
model showed little performance degradation (R2 ¼ 0.974), with significant reduction in the needed
effort and resources, as well as data collection requirements.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With the imminent depletion of fossil fuel resources in the near
future, significant research and development efforts have been
made to create enhanced and efficient renewable energy systems
[1]. Recently, hybrid systems with more than one source of
renewable energy have been devised. In particular, hybridization of
solar and wind energy sources has emerged as one of the most
promising renewable energy schemes. Such a hybrid scheme can be
realized using several designs including primarily wind solar
towers [2].
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1.1. Wind solar tower

The working idea of the solar chimney is based on the basic
principle of physics, the fact that hot air rises to generate flow
stream, as shown in Fig. 1a. Its configuration consists of 3 main
components:

C Transparent solar thermal collector.
C High-rise vertical tower.
C Wind turbine.

Fig. 1 demonstrates the mechanism of power generation inwind
solar towers. This mechanism could be divided into the following
two components:

C Solar energy contribution: The air between the collector and
ground is heated by the transparent solar collector, creating a
green house effect. Then, a thermal updraft is induced within
the vertical tower. This updraft turns a wind turbine at the
base of the tower to produce electricity, as shown in Fig. 1a.
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Fig. 1. A schematic for the power generation in the wind solar tower [3].

M.A. Rushdi, S. Yoshida, K. Watanabe et al. Renewable Energy 177 (2021) 1001e1013
C Wind energy contribution: By adding a vortex generator at
the top of the tower, the upper wind will hit the vortex
generator resulting in a vortex flow pattern. This will create a
low-pressure field that will urges the flow to go upward and
cause a suction updraft that will rotate the turbine. This
procedure is represented schematically in Fig. 1b.

Hybrid renewable energy systems that utilize solar and wind
energy sources are fairly new. Such systems improve upon solar
chimneys that generate power based on solar energy only [4e6]. In
fact, the design of solar chimneys dates back 500 years ago when
Leonardo Da Vinci envisioned the chimney tower as a smoke jack
[7]. However, the use of solar towers for power generation was not
proposed until the 19th century. Since then, several variations and
enhancements of solar towers have been realized [4].

The first solar tower prototype was implemented in Man-
zanares, Spain by a team led by J€org Schlaich [8,9]. This prototype
achieved 50 kW successfully. According to the findings from this
project, Haaf et al. [10,11] defined the basic physical concepts of
electricity generationwith solar chimney power plants (SCPP). This
opened the doors for more projects in other countries [12e16] and
research on how to improve the power generation [17,18]. From this
point, new types of WST were introduced [19,20], which mainly
differ on how to utilize wind power.
1.2. Machine learning applications in WST

Machine learning (ML) and deep learning (DL) methods have
gained a lot of research momentum recently because of their ca-
pabilities in modeling nonlinear inputeoutput relations when
solving classification or regression problems. The power of these
methods extends to multivariate problems where the number of
input variables or features is large. Learning methods have been
successfully applied in computer vision [21], pattern recognition
[21], bioinformatics [22], medical diagnosis [23] etc. As well,
common machine learning methods are currently included in
hardware-optimized software libraries such as Scikit Learn [24],
Pytorch [25] and TensorFlow [26].

Supervised learning methods represent a class of widely used
methods. In such a method, pairs of the input variables x and the
output variable y are used to learn the inputeoutput mapping
function y ¼ f(x). The goal of any supervised learning method is to
approximate a mapping function by optimizing some objective
function, such that when new input data samples x* are available
1002
(without associated real output), we would be able to predict the
outputs y*(x*) for these data samples. One-dimensional linear
regression, for example, is the problem of fitting a line y ¼ ax þ b to
a number of n labeled points fx; ygni¼1, by minimizing some loss
function, such as the least-square error function.

Several approaches have been proposed for solar chimney sys-
tem modeling, including primarily the work done by Pasumarthi
et al. [27,28]. This model was tested and verified on a small-scale
prototype built in Gainesville, Florida. However, on the large-
scale, the model shows 20% accuracy regarding the exit velocity
and 9.5% regarding the power output [28]. Machine learning
models can show better generalization, tolerate weather variations,
and represent good solutions for modeling and prediction in
renewable energy systems, if the suitable data was measured. In
this paper, wewill use the data collected from thewind-solar tower
developed and established at Kyushu University [3,16] for modeling
and prediction of the thermal updraft in wind solar tower systems
using a machine learning approach. To the best of our knowledge,
this is the first attempt to employ machine learning algorithms
with experimental results from a wind solar tower. Nevertheless,
several machine learning methods have been reported for wind
energy applications [29e33], solar energy applications [34,35], and
renewable energy systems in general [36].
1.3. Organization and contribution

In this paper, we present a fairly new renewable energy tech-
nique that combines solar and wind powers. It's called the wind-
solar tower or wind-solar chimney power plant. We used the
data collected from the wind-solar tower developed at Kyushu
University [3,16]. We performed sensitivity analysis to choose the
important features. The aim was to come up with a model that
describes the system or predicting the thermal updraft. We eval-
uated several machine learning models based on key quality met-
rics to choose the best model that balances accuracy and speed.

The paper is divided into five main sections. Section 2 presents
the wind-solar tower system and the collected data. In Section 3,
we presented the data and performed sensitivity analysis that
guided us through the feature selection. Section 4 shows the ma-
chine learning construction and how the quality assessment of the
model was performed. In Section 5, we present the detailed results
of a simple and efficient machine learning technique, which is a
linear regression model. Finally, Section 6 concludes the paper and
points out future research directions.
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2. System setup and data collection

2.1. System components

The data was collected from a WST system built in Kyushu
University - Chikuchi Campus. The details of the system could be
found in the previous work of Ohya et al. [3,16]. The data was
collected using the following sensors:

C Temperature sensors for measuring the temperature at
several points at the base or inside the collector. Also, for
measuring the ambient air temperature and the temperature
of the thermal updraft inside the tower.

C A pyranometer for measuring solar radiation.
C An ultrasonic speedometer for measuring the thermal up-

draft (i.e. the internal ascending wind speed).
C A 3-cup anemometer for measuring the wind speed of the

ambient air.
C Sensors tomeasure thewind turbine speed (rpm) and output

power (mW).

The system setup was originally symmetric, i.e. the tower is
exactly in the middle of the collector base. Currently, the collector
was moved a little to the right (as represented by the green dashed
line in Fig. 2), which makes the two temperate sensors [CH1-3 &
CH1-4] outside the collector. The reason for the new configuration
is that it was expected it will cause a higher power generation due
to the effect of the heat transfer representative length [37].
2.2. Data description and statistics

Data collection was performed with two setups:

C No wind turbine: The output in this case is the thermal up-
draft (CH2-7). Note that, the channels of the WT are still
Fig. 2. Sensor locations within th
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connected in this setup but return no useable/meaningless
data, as shown and proved through the sensitivity analysis.

C With wind turbine: The output in this case is the power
generated from WT (CH3-2).

The two cases are represented in two folders, each folder con-
tains several “.csv” files. Each file contain 28 columns, consists of 27
channels represented in Table 1 in addition to a “DATETIME” col-
umn that represent the exact date and time of the measured
sample. The locations of the sensors are presented in Fig. 2 and the
data statistics are presented in Table 2. Note that there are some
quantities that are measured by two sensors, thenwe use the stable
one.

In this paper, we will focus on the case of “Nowind turbine” and
it consists of 65 days of measurements, each day represented in one
“.csv” file. The measurement is done between 4:50 p.m. and 10:40
a.m. on random days within the period between November and
April, which belongs to Autumn and Winter semesters and
considered to have less solar radiation.
2.3. Added features

Two more features were also investigated for enhancing the
thermal updraft prediction performance. The first one is the dif-
ference between the ambient temperature [CH1-12] and the tem-
perature inside the wind solar tower [CH1-13].

The second feature is a categorical variable for identifying day
and night times. This feature was initially calculated based on the
current time and the sun position relative to the WST system
location using the PyEphem Python library for astronomical algo-
rithms. Contrary to our expectations, this feature turned to be not
highly correlated with the output thermal updraft. This is possibly
because of frequent cloudy days. While we may have picked
another feature to reflect weather, we chose to categorize this
feature based on the amount of solar radiation. Later, the
e wind solar tower system.



Table 1
Description and units of the collected data.

Channels Description Unit

CH1-1: CH1-
10

Temperature (at the base/collector) �C

CH1-11 Wind speed [Not Used - replaced by CH2-4] m/s
CH1-12 Temperature of the outside air �C
CH1-13 Temperature inside the tower �C
CH1-14 [�] e

CH1-15 Wind direction (outside the tower) �

CH1-16 Wind turbine speed [Not Used - replaced by CH3-1] rpm

CH2-1 Solar radiation (by pyranometer) kW/
m2

CH2-2 Electric generating capacity (inside the collector) kW
CH2-3 Electric generating capacity (outside) kW
CH2-4 Wind speed of the outside air “u” m/s
CH2-5 Wind turbine output [Not Used - replaced by CH3-2] kW
CH2-6 Wind turbine rotation speed [Not Used - replaced by

CH3-1]
rpm

CH2-7 Internal ascending wind speed “w” (at the rotor) m/s
CH2-8 Wind direction (at the rotor) �

CH3-1 Wind turbine speed rpm
CH3-2 Wind turbine power output mW
CH3-3 Voltage after rectification V

Table 2
Basic statistics of the collected data.

CH mean std median min max

CH1-1 7.434557 4.926402 5.233700 2.345050 23.859300
CH1-2 14.485885 5.028030 12.490100 9.710620 30.764100
CH1-3 �55.717631 15.743660 �59.065200 �59.577300 20.777300
CH1-4 �7.978556 28.897641 7.325270 �59.594100 30.846200
CH1-5 12.858084 6.706170 10.528900 8.004400 36.033000
CH1-6 11.327303 6.192751 8.629300 6.115750 32.773600
CH1-7 13.107311 6.942188 10.101100 8.027840 35.455700
CH1-8 14.829164 8.376205 11.367000 8.721610 44.804400
CH1-9 14.486690 8.061751 11.066700 8.797800 40.088600
CH1-10 21.125678 8.409371 21.671800 8.906230 41.099600
CH1-11 0.435379 0.038580 0.419927 0.386007 0.544762
CH1-12 11.635292 4.412510 9.934800 6.576560 26.411000
CH1-13 13.266569 4.950520 11.226900 9.090820 29.602600
CH1-14 0.007975 0.001109 0.008066 0.005289 0.011612
CH1-15 135.461883 60.934473 124.607000 7.905580 339.600000
CH1-16 �9.159765 4.746319 �11.980500 �12.000000 2.442000
CH2-1 0.074719 0.190329 �0.007750 �0.028270 0.660562
CH2-2 0.000523 0.000164 0.000509 0.000122 0.000997
CH2-3 0.002564 0.001272 0.003093 0.000305 0.004660
CH2-4 0.472834 0.376623 0.281543 0.266172 2.201430
CH2-5 0.367155 0.190773 0.411945 0.070859 0.622304
CH2-6 0.011046 0.012899 0.004212 0.001852 0.043773
CH2-7 0.786003 0.965832 0.356561 �0.009530 3.651520
CH2-8 118.174867 57.351833 145.852000 8.652930 252.247000
CH3-1 0.000000 0.000000 0.000000 0.000000 0.000000
CH3-2 1.028876 3.007783 0.100000 0.000000 35.300000
CH3-3 0.073904 0.082253 0.052933 0.005133 0.642300

Fig. 3. A 3D mesh plot of the thermal updraft as a function of wind speed and solar
radiation.
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categorical feature was encoded using a one-hot encoder into a
one-hot numeric array. So, each category is represented by a binary
vector.

3. Data analysis and pre-processing

In this section, we will provide details of our data analysis
including data visualization, and correlation analysis. We also carry
out sensitivity analysis to decide suitable parameter settings and
significant features for prediction model construction. Numerous
sensitivity analysis methods have been proposed for the design and
1004
realization of wind solar tower systems [38e41], as well as inves-
tigating the effects of parameter variations on the WST system
output [14,15]. In the current work, we perform sensitivity analysis
based on the Pearson correlation coefficient, and select the features
accordingly.

3.1. Data visualization

For exploring the collected data patterns and gaining better
insights on them,we examined the variations in the output thermal
updraft [CH2-7] as a function of the two most important WST pa-
rameters, namely the solar radiation [CH2-1] and the wind speed
[CH2-4]. Figs. 3 and 4 show 3D mesh and scatter plots of this
functional relationship, respectively. The two figures show that the
effect of solar radiation is higher than that of the wind speed. Also,
Fig. 4 shows that solar radiation is highly correlated with the
thermal updraft, according to the projection on the plane con-
taining both variables. This correlation is further demonstrated in
Fig. 6.

3.2. Correlation analysis

Bivariate correlation analysis seeks to measure the strength and
direction of association between two variables. The correlation
strength is represented by the value of the correlation coefficient
which varies between þ1 and �1 [42].

A perfect degree of association between two variables is indi-
cated by correlation coefficient values of 1 or -1. The association
between the two variables will be weaker, as the value of the cor-
relation coefficient goes towards zero. The sign of the correlation
coefficient indicates the direction of the relationship:þ1 indicates a
direct linear proportionality, while �1 indicates inverse
proportionality.

The most widely used statistical measures of correlation are
Pearson correlation, Kendall rank correlation and Spearman cor-
relation. Pearson correlation is the most common measure of
dependence between two variables. This measure is defined as the
ratio of the co-variance of the two variables to the square root of
their variance product. Based on expected value computations, a
Pearson product-moment correlation coefficient can be used to
create a best-fit line for a dataset of the two variables. The resulting
Pearson correlation coefficient shows how far apart the real data



Fig. 4. A 3D scatter plot of the thermal updraft as a function of wind speed and solar
radiation.

Fig. 5. Heatmap of the pairwise Pearson correlation co
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measurements are from the expected values. We will end up with
either negative or positive correlation (depending on the sign of
Pearson's correlation coefficient) if there is some kind of interaction
between variables.

The correlation coefficient r for two random variables X and Y
with expected values mX & mY and standard deviations sX & sY is
defined as

rX;Y ¼ corrðX; YÞ ¼ covðX; YÞ
sXsY

¼ E½ðX � mXÞðY � mY Þ�
sXsY

(1)

where E is the expected value operator, and cov() denotes the
covariance function. The Pearson correlation is defined only if both
standard deviations are finite and positive. This correlation coeffi-
cient can be defined alternatively as:

rX;Y ¼ EðXYÞ � EðXÞEðYÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðX2Þ � EðXÞ2

q
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðY2Þ � EðYÞ2

q (2)
efficient between each pair of the measured data.



Fig. 6. Absolute value of Pearson correlation coefficient between input features and the output thermal updraft [CH2-7].

Fig. 8. Correlation between thermal updraft and wind speed.
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Fig. 5 shows a heatmap representation of the Pearson correla-
tion coefficients for all variables. Further, Fig. 6 shows the correla-
tion of each possible input variable of the WST system with the
thermal updraft output. Indeed, Fig. 6 is just an alternative visual
representation of the last row of the heatmap in Fig. 5. The corre-
lation information in these two figures is exploited for feature
selection.

Figs. 7e10 show the correlation between thermal updraft and
each of the following key input variables respectively: the solar
radiation, the wind speed, the temperature outside the tower, and
the temperature inside the tower. For example, Fig. 7 shows that
the data samples are concentrated around the red line, indicating
that an increase in the solar radiation will lead to a strongly pro-
portional increase in the thermal updraft, especially after 0.2 kW/
m2. This strong correlation between the solar radiation and ther-
mal updraft is quantified by the high Pearson correlation coefficient
of 0.98. On another hand, Fig. 8 shows that wind speed and thermal
updraft have a moderate value of the Pearson correlation coeffi-
cient of 0.43, which agrees with the observation that the data is
scattered and hence the red line couldn't describe a strong
relationship.

3.3. Feature selection

Feature selection is the process in which we select, automati-
cally or manually, the features that contribute the most to the
prediction variable or output that we are interested in. If there are
irrelevant features in the data, these features can decrease the
Fig. 7. Correlation between thermal updraft and solar radiation.
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prediction model accuracy, robustness, and generalization. Feature
selection and data cleaning should be the first and most essential
step of prediction model construction [43].

In our work, we will manually select features based on the
correlation analysis results shown in Fig. 5. According to our
Fig. 9. Correlation between thermal updraft and outside temperature.



Fig. 10. Correlation between thermal updraft and inside temperature.

Fig. 11. Experimental setup for prediction model training and testing (adapted from
Ref. [33]).

M.A. Rushdi, S. Yoshida, K. Watanabe et al. Renewable Energy 177 (2021) 1001e1013
intuitive understanding of the WST system, we expect that the
output thermal updraft will mainly be affected by solar radiation.
As expected, Fig. 6 shows that the thermal updraft has the highest
correlation with the solar radiation. This agrees with the temper-
ature readings from the sensors distributed at the base/collector
[CH1-5 - CH1-10] as well as inside and outside the tower [CH1-12&
CH1-13].

In the current system configuration, the two channels [CH1-3 &
CH1-4] are outside the base/collector and should be correlatedwith
the outside temperature [CH1-12]. However, the heatmap didn't
support this correlation. So, we made further investigations and
found some irregularities in the sensor measurements. As a result,
those two features will not be selected because their measure-
ments are questionable and could be replaced instead by [CH1-12].

The sensors of the two channels [CH1-1 & CH1-2] are located
inside the tower, and so they are highly correlated with [CH1-13],
although their sensor types are different. The channel [CH1-2] is
located just under the location of [CH1-13], and thus the two
channels are highly correlated, as shown in Fig. 5. For now, we will
keep all these channels. However, [CH1-1 & CH1-2] could be
replaced by [CH1-13].

In the current no-wind-turbine setup, the wind-turbine-related
channels are irrelevant and have very low correlation as shown in
Fig. 6. The following channels will be removed: [CH1-16, CH2-5,
CH2-6, CH3-1, CH3-2, CH3-3].
4. Construction of prediction models

4.1. Performance assessment

For performance assessment of the machine learning algorithm,
the data set was split, as shown in Fig. 11, as follows:

C Training Set: 70% of the samples were used to train the
model.

C Test Set: 20% of the samples used to test the model using the
quality metrics.

C Validation Set: 10% of the data was separated from the
beginning and the model doesn't have any access or infor-
mation about them. This set will be used for testing the
ability of generalization of the model. This set could be
1007
chosen based on some data that have a certain meaning. In
our case, we choose this set as the first day of measurements.

After training, multiple models were developed for thermal
updraft prediction. However, all of the obtained models are com-
plex and not easily interpretable, except for the linear regression
model which we investigate further. For the testing data, the model
performance is evaluated by comparing the model prediction and
the ground-truth thermal updraft measurements.

Quality metrics were used as cost functions to be minimized
during model training. Then, any optimization algorithm such as
the gradient descent one could be used to minimize these cost
functions. The quality metrics were used for quantitative compar-
ison on the test data. The employed quality metrics in this work are
reviewed next.
4.2. Quality metrics

In this subsection, we denote ŷi as the predicted value of the i-th
sample, yi as the corresponding true value, m as the number of
samples and Var as the variance.

C Mean Square Error: The expected value of the squared
(quadratic) error

MSEðy; ŷÞ ¼ 1
m

Xm�1

i¼0

ðyi � ŷiÞ2: (3)
C Coefficient of Determination (R2): represents the propor-
tion of variance (of y) that has been explained by the inde-
pendent variables in the model, providing an indication of
goodness of fit and therefore a measure of how well unseen
samples are likely to be predicted by the model, through the
proportion of explained variance

R2ðy; ŷÞ ¼ 1�
Pm

i¼1ðyi � ŷiÞ2Pm
i¼1ðyi � y

̄ Þ2
; (4)

where y
̄ ¼ 1

m
Pm

i¼1yi and
Pm

i¼1ðyi � ŷiÞ2 ¼Pm
i¼1ε

2
i . The best possible

score is 1 and it can be negative, because the model can be arbi-
trarily worse. A constant model that always predicts the expected
value of y, disregarding the input features, would get a score of 0.

C Maximum Residual Error: captures the worst-case error
between the predicted value and the true value. In a perfectly
fitted single output regression model, it would be 0 on the
training set. This metric shows the extent of error that the
model had when it was fitted
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Max Errorðy; ŷÞ ¼ maxðjyi � ŷijÞ: (5)
C Explained Variance: The best possible score is 1, while lower
values are worse.

Explained Varianceðy; ŷÞ ¼ 1� Varfy� ŷg
Varfyg : (6)
C Mean Absolute Error: The expected value of the absolute
error loss or l1-norm loss

MAEðy; ŷÞ ¼ 1
m

Xm�1

i¼0

jyi � ŷi
��: (7)

5. ML results

In this section, we will show the results of different machine
learning algorithms and we will compare them according to the
quality metrics and training time in seconds, as shown in Table 3.
Then the chosen machine learning model will be represented in
detail. Note that all used models are based on the standard Scikit
learn implementations [24].

According to the quality metrics and training time, presented in
Table 3, the linear regression model shows high/satisfactory accu-
racy and second-lowest training time. In the next two subsections,
we will present the details of the linear regression model and we
will visualize its accuracy.

5.1. Model representation

In this subsection, wewill represent the linear regression model
[44] in detail. It could be represented mathematically as follows:

ŷ ¼ hqðxÞ ¼ qT,x ¼ ½ q0 q1 … qn �

2
664
x0
x1
«
xn

3
775 (8)

where q is the model's parameter column vector, containing the
bias term q0 and the feature wights q1 to qn, where n is the number
of features which is 20 in our case. x is the instance's feature col-
umn vector, containing x0 to xn, with x0 always equal to 1. Finally, hq
Table 3
Quality metrics of different regression models.

1008
is the hypothesis function or prediction formula and ŷ is the pre-
dicted value.

If we select the mean square error among the quality metrics as
our performance measure or cost function. Then our goal will be
finding the values of the feature wights q that minimizes the mean
square error. This goal could be represented mathematically as
follows:

minimize
q

1
2m

Xm
i¼1

ð hqðxðiÞÞ
zfflfflfflffl}|fflfflfflffl{Predicted value

� yðiÞ
z}|{True value

Þ2
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

cost function JðqÞ (9)

To achieve this goal, we could use an algorithm such as gradient
descent [45] that will be able to minimize the quality metrics. The
gradient descent algorithm could be representedmathematically as
follows:

repeat until convergence fqjdqj �a
v

vqj
JðqÞ

|fflfflfflffl{zfflfflfflffl}
Derivative term

g (10)

where a is the learning rate which represents the steps. qj is the j-th
feature and j is from 0 to number of features m. Noting that the
sign d means simultaneous update. Simply, if the derivative term
has -ve then qj will decrease approaching the local minimum point,
and if the derivative term hasþ ve then qjwill increase approaching
the local minimum point. We don't have to worry about getting
stuck in the local minimum point as our cost function is a convex
function and has one global minimum point.

Fig. 12 represents the coefficients q of the linear regression
model. Notice that, it can be confusing andmisleading to look at the
coefficients plot to gauge feature importance. The reason is there
maybe some of the features vary on a small scale, while others vary
a lot more. To avoid this, we should reduce all the coefficients to the
same unit of measure, by multiplying the coefficients by the stan-
dard deviation of the related feature [46]. This is equivalent to
normalize numerical variables to their standard deviation, as

y ¼
X

coefi � Xi ¼
X

ðcoefi � stdiÞ � ðXi = stdiÞ (11)

In that way, we emphasize that the greater the variance of a feature,
the larger the weight of the corresponding coefficient on the
output, all else being equal. Fig. 13 represents the coefficient
importance, it could be seen that it is quite similar to Fig. 6.



Fig. 12. Linear regression model coefficients (different units).

Fig. 13. Coefficients importance (scaled with SD of each feature).

Fig. 14. True values vs predicted value
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5.2. Model accuracy

Fig. 14 represented the true values vs the predicted values. If the
model is perfect, it will result in a straight line with 45� slope. It
could be noticed that the regression red line and the 45� slope
green line is almost identical.

Fig. 15 represents the histogram of the prediction error, which is
the difference between the predicted value and the true value. For a
good model, this histogram should be following the normal dis-
tribution centered around zero without a heavy tail, as in our case.
Fig. 16 represents a box plot for the prediction error, which is
another representation for the normal distribution. Finally, the
most important representation of the model accuracy is using the
validation set by drawing the time history of the predicted and true
values for this set, as shown in Fig.17a, and show how identical they
are. The importance of Fig. 17a comes from the point that the model
have not any clue about the data in the validation set, however, the
model was able to predict the time history in a great way.
5.3. Reduced model

For further investigation of the wind solar tower system, we
make the predictions using essential features only, which are stated
below.

C Temperature of the outside air [CH1-12].
C Temperature inside the tower [CH1-13].
C Solar radiation [CH2-1].
C Wind speed of the outside air [CH2-4].
C Wind direction (at the rotor) [CH2-8].
C Time categorical feature.

Fig. 18 represents the comparison between the full-features
model (19 features) and reduced model (6 features), according to
the scores of quality metrics. It shows that the reduced model
caused a small reduction in accuracy. But it will save huge efforts
and resources by measuring fewer data.

The results of the linear regression model for the reduced model
are represented in Fig. 19, then the coefficients importance are
shown in Fig. 20. The visual measure of the model accuracy are
represented by a true versus predicted values curve for the vali-
dation set, shown in Fig. 21. It is noticed that the main difference
with the full-features model results, shown in Fig. 14a, is that the
high values are not predicted well and there is a notable deviation
s of the linear regression model.



Fig. 15. Prediction Error of the linear regression model.

Fig. 16. Box plot for the prediction Error of the linear regression model.
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between the green and red lines, which represents the perfect
model with 45� slope and the regression line of the current data,
respectively.

The selection of the essential features is based on the under-
standing of the WST system and the Pearson correlation coefficient
represented in Fig. 6. All the temperature channels could be rep-
resented by two channels; one inside the tower [CH1-12] and the
other one is outside the tower [CH1-13]. The channels for solar
radiation [CH2-1] andwind speed [CH2-4] are essential for theWST
concept. Finally, the two channels [CH2-8] & [TIME] have a high
correlation with the output.

We tried to make more reductions in the number of features by
reducing one feature at a time, in other words, we will reduce the
number of features from 6 to 5 by different combinations. It was
found that removing the solar radiation [CH2-1] from the features
to be used with the ML algorithm, caused the most reduction in
quality metrics, as expected. Then we tried to remove two features
at a time (reduce the number of features from 6 to 4), it was found
that any combination includes removing the solar radiation [CH2-
1] causes a huge reduction in quality metrics values.
Fig. 17. History of the true (blue line) and predicted (orange line) thermal updraft
[CH2-7] values of the linear regression model.
6. Conclusion

In this work, we demonstrated an approach to employ machine
learning methods for the prediction of the thermal updraft of the
wind solar tower system. We used the experimental data from the
wind solar tower which designed and built at Kyushu University to
make sensitivity analysis and select the suitable features that will
be used within the regression model. We applied multivariate
regression models, then we choose a suitable model based on the
quality metrics and training time. Linear regression model was
illustrated and its results were visualized to show its high predic-
tion accuracy. Finally, we reduced the number of used features
1010



Fig. 18. Comparison between full-features model and reduced model, according to the
scores of quality metrics.

Fig. 19. Linear regression coefficients for reduced model.

Fig. 20. Coefficient importance for the reduced model.

Fig. 21. True values vs predicted values of the linear regression for the reduced model
validation set.
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which cause a small accuracy reduction but with great efforts and
resource savings.

In the future work, we will add set of features that describe the
weather and that will help us to determine the suitable deployment
locations for WST systems which will lead to power maximization.
Also, measurements to distinguish between rainy and dry days, and
measurements of natural precipitation factors inside the collector
will enhance the model accuracy all over the whole year. Machine
learning algorithms could be used for the systemdesign of thewind
solar tower by defining features like: inclination angle of the tower,
tower height, diameter of the tower base, turbine location from the
base, etc. and perform several experiments with different values for
each feature and different combination between the features.
Finally, the proposed reduced model shows that machine learning
not only can assist future designs but also it could inform the
development of simplified deterministic models.
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